Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention.
منابع مشابه
Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.
The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, w...
متن کاملCorrelations of iodide ions with vascular endothelial growth factor and its receptors during the proliferation of vascular endothelial cells.
The aim of this study was to explore the correlations of iodide ions with vascular endothelial growth factor (VEGF) and its receptors during the proliferation of vascular endothelial cells (VECs). The proliferation rates of VECs in the presence of iodide ions and VEGF inhibitor were determined using the CCK-8 method. The effect of iodide ions on the phosphorylation of vascular endothelial growt...
متن کاملOlive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals.
OBJECTIVE Epidemiology suggests that Mediterranean diets are associated with reduced risk of cardiovascular disease. Because monocyte adhesion to the endothelium is crucial in early atherogenesis, we evaluated whether typical olive oil and red wine polyphenols affect endothelial-leukocyte adhesion molecule expression and monocyte adhesion. METHODS AND RESULTS Phytochemicals in olive oil and r...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملCombined Treatment of Hydroxytyrosol with Carbon Monoxide-Releasing Molecule-2 Prevents TNFα-Induced Vascular Endothelial Cell Dysfunction through NO Production with Subsequent NFκB Inactivation
This study investigated the atheroprotective properties of olive oil polyphenol, hydroxytyrosol (HT), in combination with carbon monoxide-releasing molecule-2 (CORM-2) that acts as a carbon monoxide donor using vascular endothelial cells (VECs). Our results showed that CORM-2 could strengthen the cytoprotective and anti-apoptotic effects of HT against TNFα-induced cellular damage by enhancing c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental cell research
دوره 322 1 شماره
صفحات -
تاریخ انتشار 2014